我们探索了使用机器学习技术来消除实验光谱中大量$ \ gamma $ ray检测器的响应。分段$ \ gamma $ -Ray总吸收光谱仪(TAS)允许同时测量单个$ \ gamma $ -ray $ -Ray-ray Energy(e $ _ \ gamma $)和总激发能量(E $ _X $)。 TAS检测器数据的分析使E $ _X $和E $ _ \ gamma $数量相关联,因此与使用E $ _x $和E $ _ \ gamma $响应函数相关的技术是复杂的,因此不那么准确。在这项工作中,我们调查了有条件生成的对抗网络(CGAN)同时展开$ e_ {x} $和$ e _ {\ gamma} $ data在TAS检测器中的数据。具体而言,我们采用PIX2PIX CGAN,这是一种基于深度学习进展的生成建模技术,以处理$(e_x,e _ {\ gamma})$矩阵作为图像到图像翻译问题。我们提出了单个 - $ \ gamma $和double-$ \ gamma $ decay cascades的模拟和实验矩阵的结果。我们的模型展示了检测器分辨率限制内的表征功能,其模拟测试用例$ 90 \%$。
translated by 谷歌翻译
人工智能/机器学习方法的进步提供了在科学研究中具有广泛适用性的工具。这些技术正在跨越核物理研究主题的多样性,从而推进将有助于科学发现和社会应用。该审查提供了一种由人工智能和机器学习技术改变的核物理研究的快照。
translated by 谷歌翻译
条件密度的可靠建模对于粒子物理学等定量科学领域很重要。在物理外部的域中,已显示隐式定量位神经网络(IQN)以提供有条件密度的准确模型。我们使用Compact Muon螺线管(CMS)打开数据门户的工具和模拟数据成功地应用IQNS进行喷射仿真和校正。
translated by 谷歌翻译
Tensorbnn是一个基于TensorFlow的新软件包,可实现现代神经网络模型的贝叶斯推断。神经网络模型参数的后密度表示为使用哈密顿蒙特卡洛采样的点云。Tensorbnn软件包利用Tensorflow的架构和培训功能以及在培训和预测阶段使用现代图形处理单元(GPU)的能力。
translated by 谷歌翻译
Real-time individual endpoint prediction has always been a challenging task but of great clinic utility for both patients and healthcare providers. With 6,879 chronic kidney disease stage 4 (CKD4) patients as a use case, we explored the feasibility and performance of gated recurrent units with decay that models Weibull probability density function (GRU-D-Weibull) as a semi-parametric longitudinal model for real-time individual endpoint prediction. GRU-D-Weibull has a maximum C-index of 0.77 at 4.3 years of follow-up, compared to 0.68 achieved by competing models. The L1-loss of GRU-D-Weibull is ~66% of XGB(AFT), ~60% of MTLR, and ~30% of AFT model at CKD4 index date. The average absolute L1-loss of GRU-D-Weibull is around one year, with a minimum of 40% Parkes serious error after index date. GRU-D-Weibull is not calibrated and significantly underestimates true survival probability. Feature importance tests indicate blood pressure becomes increasingly important during follow-up, while eGFR and blood albumin are less important. Most continuous features have non-linear/parabola impact on predicted survival time, and the results are generally consistent with existing knowledge. GRU-D-Weibull as a semi-parametric temporal model shows advantages in built-in parameterization of missing, native support for asynchronously arrived measurement, capability of output both probability and point estimates at arbitrary time point for arbitrary prediction horizon, improved discrimination and point estimate accuracy after incorporating newly arrived data. Further research on its performance with more comprehensive input features, in-process or post-process calibration are warranted to benefit CKD4 or alike terminally-ill patients.
translated by 谷歌翻译
Humans use all of their senses to accomplish different tasks in everyday activities. In contrast, existing work on robotic manipulation mostly relies on one, or occasionally two modalities, such as vision and touch. In this work, we systematically study how visual, auditory, and tactile perception can jointly help robots to solve complex manipulation tasks. We build a robot system that can see with a camera, hear with a contact microphone, and feel with a vision-based tactile sensor, with all three sensory modalities fused with a self-attention model. Results on two challenging tasks, dense packing and pouring, demonstrate the necessity and power of multisensory perception for robotic manipulation: vision displays the global status of the robot but can often suffer from occlusion, audio provides immediate feedback of key moments that are even invisible, and touch offers precise local geometry for decision making. Leveraging all three modalities, our robotic system significantly outperforms prior methods.
translated by 谷歌翻译
Image analysis technologies empowered by artificial intelligence (AI) have proved images and videos to be an opportune source of data to learn about humpback whale (Megaptera novaeangliae) population sizes and dynamics. With the advent of social media, platforms such as YouTube present an abundance of video data across spatiotemporal contexts documenting humpback whale encounters from users worldwide. In our work, we focus on automating the classification of YouTube videos as relevant or irrelevant based on whether they document a true humpback whale encounter or not via deep learning. We use a CNN-RNN architecture pretrained on the ImageNet dataset for classification of YouTube videos as relevant or irrelevant. We achieve an average 85.7% accuracy, and 84.7% (irrelevant)/ 86.6% (relevant) F1 scores using five-fold cross validation for evaluation on the dataset. We show that deep learning can be used as a time-efficient step to make social media a viable source of image and video data for biodiversity assessments.
translated by 谷歌翻译
Recent work has shown that machine learning (ML) models can be trained to accurately forecast the dynamics of unknown chaotic dynamical systems. Such ML models can be used to produce both short-term predictions of the state evolution and long-term predictions of the statistical patterns of the dynamics (``climate''). Both of these tasks can be accomplished by employing a feedback loop, whereby the model is trained to predict forward one time step, then the trained model is iterated for multiple time steps with its output used as the input. In the absence of mitigating techniques, however, this technique can result in artificially rapid error growth, leading to inaccurate predictions and/or climate instability. In this article, we systematically examine the technique of adding noise to the ML model input during training as a means to promote stability and improve prediction accuracy. Furthermore, we introduce Linearized Multi-Noise Training (LMNT), a regularization technique that deterministically approximates the effect of many small, independent noise realizations added to the model input during training. Our case study uses reservoir computing, a machine-learning method using recurrent neural networks, to predict the spatiotemporal chaotic Kuramoto-Sivashinsky equation. We find that reservoir computers trained with noise or with LMNT produce climate predictions that appear to be indefinitely stable and have a climate very similar to the true system, while reservoir computers trained without regularization are unstable. Compared with other types of regularization that yield stability in some cases, we find that both short-term and climate predictions from reservoir computers trained with noise or with LMNT are substantially more accurate. Finally, we show that the deterministic aspect of our LMNT regularization facilitates fast hyperparameter tuning when compared to training with noise.
translated by 谷歌翻译
Human and robot partners increasingly need to work together to perform tasks as a team. Robots designed for such collaboration must reason about how their task-completion strategies interplay with the behavior and skills of their human team members as they coordinate on achieving joint goals. Our goal in this work is to develop a computational framework for robot adaptation to human partners in human-robot team collaborations. We first present an algorithm for autonomously recognizing available task-completion strategies by observing human-human teams performing a collaborative task. By transforming team actions into low dimensional representations using hidden Markov models, we can identify strategies without prior knowledge. Robot policies are learned on each of the identified strategies to construct a Mixture-of-Experts model that adapts to the task strategies of unseen human partners. We evaluate our model on a collaborative cooking task using an Overcooked simulator. Results of an online user study with 125 participants demonstrate that our framework improves the task performance and collaborative fluency of human-agent teams, as compared to state of the art reinforcement learning methods.
translated by 谷歌翻译
这项研究提出了一个基于移动网格参数化的端到端无监督的差异可变形登记框架。使用此参数化,可以使用其转换雅各布的决定因素和末端速度场的卷曲来建模。变形场的新模型具有三个重要优势。首先,它放松了对成本函数的显式正则化项和相应重量的需求。平滑度隐含在溶液中,从而导致物理上合理的变形场。其次,它通过适用于转换雅各布决定因素的明确约束来保证差异性。最后,它适用于心脏数据处理,因为该参数化的性质是根据​​径向和旋转成分定义变形场。通过在包括2D和3D心脏MRI扫描在内的三个不同数据集上评估拟议方法来研究算法的有效性。结果表明,所提出的框架在生成差异变换的同时优于现有的基于学习的方法和基于非学习的方法。
translated by 谷歌翻译